


2 3

Keep your code clean
As our business digitise, code quality becomes 
ever more significant.

Did you know that due to software bug 
Knight Capital Group lost $440 
million in 45 minutes??

As a consulting company Sollers is expected 
to provide the highest quality software 
to our clients. 

Insurance core systems can harbour as many 
as one hidden bug, smell or vulnerability per 
every three lines of code.

To prevent it and ensure reliability of our 
implementations, Sollers developed GoQu-

a tool for quality assurance 
dedicated to Guidewire
products.
 

 



4 5

    
    

   
   

   
   

   
   

   
Te

st
 M

an
ag

ement        
                   Test Preparation                                    Test Execution

automatic

code

analysis

comprehensive 
reports

for it leaders

direct assistance

for developers

GoQu suite

assists developers with code 
analysis directly in Guidewire 
Studio, preventing bad code from 
ever being written.

enables code quality monitoring 
of your Guidewire Centers, provid-
ing IT leadership with transparent 
reports.

combines the features of GoQu Hub 
and Web to be used in portals world. 



We selected
9 common issues
which can impact code quality:

hidden time bombs

Magic numbers should not be used  (p. 10)

„Switch” statements should end with
„default” clause (p. 12)

Two branches in a conditional structure should 
not have the same entering condition (p. 14)

errors

Static fields should not be updated in construc-
tors (p. 18)

Excessive imports should be removed (p. 20)

Throwable and Error should not be caught (p. 22)

complexity

Avoid n nested loop constructs (p. 26)

Expressions should not be too complex (p. 28)

Complexity of methods should not be too high 
(p .30)

 
76



8 9

Hidden time bombs

“Don’t fix bugs later;
fix them now.”
steve maguire



1110

Compliant Code:

Noncompliant Code:

public class TaxCalculator {
 
    private static final var TAX_MULTIPLIER = 0.25 

    public function calculateTax (amount : double ):
    double { 
    return amount * TAX_MULTIPLIER
   } 
}

public class TaxCalculator { 

    public function calculateTax(amount : double):
    double { 
    return amount * 0.25 
    } 
  } 

Magic numbers
should not be used

Hardcoded values can lead to significant issues.

Example: current tax rate could be hardcod-
ed in software, potentially losing company 
significant amount of money and risking 
non-compliance when regulations change.

Use private static final field of a class.



1312

„Switch” statements 
should end with
„default” clause

Code without default execution path can lead to 
situation when no defined action is assigned to 
a specific scenario.

This can result in critical error of the
software – potentially reasulting in
business interruption.

The clause should either take appropriate ac-
tion, or contain a suitable comment as to why no 
action is taken. 

Default clause should always exist, even if it is 
the enum or typelist used as key and all vari-
ants are covered, as it could be always extended 
by someone so your code won’t cover this case 
and can cause unexpected behavior.

Compliant Code:

Noncompliant Code:

switch (parameter) {
case 0:
doSomething()
break
case 1:
doSomethingElse()
break
default:
handleError()
break

}

switch (parameter) { // missing default clause
case 0:
doSomething()
break
case 1:
doSomethingElse()
break

}



14 15

Two branches in a
conditional structure 
should not have the 
same entering condition
Duplicating an entering condition automatically 
leads to dead code (section in the code that is 
never used). Usually, this is due to a copy/paste 
error.

At best, it’s simply just a dead code and at worst, 
it’s a bug that is likely to induce further 
bugs as the code is maintained, and could 
lead to unexpected behavior of the soft-
ware.

A chain of if/else if statements is evaluated from 
top to bottom. At most, only one branch will be 
executed: the first one with a condition that eval-
uates to true.

Compliant Code:

Noncompliant Code:

if (parameter == 1) {
  openWindow()
} else if (parameter == 2) {
  closeWindow()
} else if (parameter == 3) {
  moveWindowToTheBackground()
}

if (parameter == 1) {
  openWindow()
} else if (parameter == 2) {
  closeWindow()
} else if (parameter == 1) { // Noncompliant
  moveWindowToTheBackground()
}



16 17

Errors

“The greatest mistake is
to imagine that we never err.”
thomas carlyle



18 19

public class Person {
   private var _dateOfBirth : Date
   private static var _expectedFingers : int = 10
   construct(birthday : Date) {
       _dateOfBirth = birthday
   }
}

public class Person {
   private static var _dateOfBirth : Date
   private static var _expectedFingers : int
   construct(birthday : Date) {
        _dateOfBirth = birthday  // Noncompliant -
                                //now everyone has
                               //this birthday
       _expectedFingers = 10  // Noncompliant
  }
}

Static fields should
not be updated in
constructors

It may override the expected values with wrong 
ones. As a consequence it may produce 
unexpected behavior and may interrupt 
internal processes.

These fields can be referenced before creating 
an instance of the class. Setting the value in the 
constructor will be done later or not at all.

Compliant Code:

Noncompliant Code:



2120

Excessive imports 
should be removed

It may result in the usage of wrong or outdated 
version of the library  -  adversely  impacting 
the release and deployment.

Compliant Code:

package my.company.mypackage
uses com.sample.animals.Cat 
uses com.sample.plants.flower
class Garden { 
     function makeNoise(cat : Cat) { 
      cat.makeSound() 
     } 
     function lookupLatinName(flower : Flower): String {
     // ...
     } 
 // ... 
} 

Noncompliant Code:

package my.company.mypackage
uses java.lang.String;
uses com.sample.animals.Cat
uses com.sample.animals.Dog 
uses com.sample.plants.* 
class Garden { 
    function makeNoise(cat : Cat) { 
     cat.makeSound() 
     } 
    function lookupLatinName(flower : Flower) : String {
     // ...
     } 
   
 // ... 
}



22

Throwable and Error 
should not be caught

Catching NullPointerException should also be avoided, 
as stack trace will be lost.

It hides the origin of the original error and reports something 
else in exchange. To get to the bottom of the pro-blem, 
in some cases company  would have to manually check 
the entire codebase.

Throwable is the superclass of all errors and exceptions 
in Java. Error is the superclass of all errors, which are not 
meant to be caught by applications. Catching either Throw-
able or Error will also catch OutOfMemoryError and Inter-
nalError , from which an application should not attempt 
to recover.

Exception re-thrown catch clauses should also provide some 
additional handling apart from throw statement.

Compliant Code:

Noncompliant Code:

try {
     //...
} catch (exception : MyCustomException) {
     doSomeErrorHandling(exception)
}
try {
     //...
} catch (exception : Exception) {
     doSomeInitialErrorHandling(exception)
throw exception
}

try {
     //...
} catch (throwable : Throwable) {
     //...
}
try {
     //...
} catch (error : Error) {
     //...
}

Catching NullPointerException should also be avoided, 
as stack trace will be lost. Most situation in which 
NullPointerException is explicitly caught can be converted 
to a null test, and any behavior being carried out in the catch 
block can easily be moved to the “is null” branch of the con-
ditional.

23



24 25

Complexity

“Any intelligent fool can make things bigger and 
more complex... It takes a touch of genius – and a 
lot of courage to move in the opposite direction.”
e. f.  schumacher



The complexity limit can be customized (default 
limit is set to 4).

Compliant Code:

Avoid n nested loop
constructs

Unnecessarily nested loops often form ineffi-
cient code or code that does not produce 
correct results. They can also cause perfor-
mance issues.

Issue indicates that you should rethink if your 
solution is designed well. Sometimes nest-
ed loops are really needed, for example to get 
some information. However, sometimes they can 
be dangerous and cause performance issues. 
Unnecessarily nested loops often form ineffi-
cient code or code that does not produce correct 
results.

var numbers = new int[]{1, 2, 3, 4, 3}
for (a in numbers) { // Compliant - depth = 1
   for (b in numbers) { // Compliant - depth = 2
     for (y in numbers index m) { // Compliant - depth = 3
       for (z in numbers index n) { // Compliant - depth = 4
         if (m != n and y == z) {
            doSomething(z)
         }
       }
     }
   }
 }

Noncompliant Code:

var numbers = new int[]{1, 2, 3, 4, 3}
for (a in numbers) { // Compliant - depth = 1
 for (b in numbers) { // Compliant - depth = 2
  for (c in numbers) { // Compliant - depth = 3
   for (y in numbers index m) { // Compliant - depth = 4
    for (z in numbers index n) { // Noncompliant -
                                 //depth = 5, exceeding
                                 //the limit
      if (m != n and y == z) {
         doSomething(z)
     }
    }
   }
  }
 }
}26 27



28 29

Expressions should not 
be too complex

Using high number of logical and other operators 
can result in limited readability of the code 
and complicates  maintenance of the soft-
ware.

This makes  future upgrades far more 
difficult.

The complexity of an expression is defined by the 
number of logical operators (and, or, &&, ||, &, |) and 
ternary operators (condition ? ifTrue : ifFalse) it 
contains. A single expression’s complexity should 
not become too high to keep the code readable. 
Logical operators limit can be customized (default 
is set to 5).

Compliant Code:

Noncompliant Code:

if ((checkFirstCondition() or checkSecondCondition()) 
and checkThirdCondition()) {
       //...
}

if (((condition1 and condition2) or (condition3 and 
condition4)) and condition5) {
       //...
}



30 31

Complexity of methods 
should not be too high

High number of linearly independent paths in 
a software can affect negatively perfor-
mance, maintainability of the code and 
easiness to debug.

Cyclomatic complexity is a quantitative measure 
of the number of linearly independent paths 
through a program’s source code.

Compliant Code:

We recommend complexity to reach level 5 at most, but saw 
code including complexities reaching as high as 250.

public function isVehicleEligibleForSpecialInsurance(vehicle:VehicleDTO):
boolean{
   var eligible: boolean
   if (isVehicleOfEligibleType(vehicle)) { // if: +1 complexity
        eligible = true
   } else {
        switch (vehicle.Fuel) {
              case DIESEL: // case: +1 complexity
              eligible = verifyEligibilityForDiesel(vehicle.EngineData)
              break
              case LPG: // case: +1 complexity
              eligible = verifyEligibilityForLPG(vehicle.EngineData)
              break
              case GASOLINE: // case: +1 complexity
              eligible = haveEnoughModifications(vehicle)
              break
              default: // default: +1 complexity
              eligible = true
              break
       }
   }
   return eligible
} // complexity in total: 5



This was just a small sample of 

infractions, which can be identified by 

GoQu. Our  tool includes  already more 
than 120 dedicated rules for bugs, 

smells and vulnerabilities, with new 

functionalities being added monthly.

If you would you like to know more 

details about GoQu and trial it for free 

- contact us at:

GoQu@sollers.eu

by

sollers.eu


